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ABSTRACT: This study focuses on the ability of theGlobal PrecipitationMeasurement (GPM) passivemicrowave sensors

to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over theU.S. lower

Great Lakes region. GPMMicrowave Imager (GMI) high-frequency channels can clearly detect intense shallow convective

snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared

with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately

capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall

rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS

observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF’s overproduction of light

snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable

water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results

demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are under-

populated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a

priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly

important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to

improve intense lake-effect snow detection and retrieval performance.
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1. Introduction

Satellite remote sensing of precipitation is essential for sci-

ence and society. With global precipitation estimates available

from spaceborne platforms, it becomes feasible to assess water

resources, monitor extreme events, and to gain and enhance

scientific knowledge regarding precipitation processes at

global, regional, and smaller scales (Adler et al. 2009;

Kirschbaum et al. 2017; Reed et al. 2015; Skofronick-Jackson

et al. 2017; Sorooshian et al. 2011). Liquid rain precipitation

has been estimated from satellites for more than five decades

with accuracy improving over time (Tang et al. 2020). However,

concerted efforts to estimate falling snow from spaceborne

platforms have only been undertaken in the last 1–2 decades

(Casella et al. 2017; Kongoli et al. 2003; Kulie and Bennartz

2009; Meng et al. 2017; Rysman et al. 2019; Skofronick-

Jackson et al. 2004, 2019). Retrieving snowfall from space is

necessary to globally quantify water resources transported

from the atmosphere to land surfaces. However, developing

accurate falling snow estimates has been challenging because

of snowflake particle complexities (Gong and Wu 2017; Kneifel

et al. 2020; Liu and Seo 2013; Skofronick-Jackson and Johnson

2011), frozen surface contamination of the snowflakes scattering

signature (Ebtehaj and Kummerow 2017; Prigent et al. 2006),

and nonlinear relationships between observations and the

retrieved products.

The Global PrecipitationMeasurement mission (GPM;Hou

et al. 2014; Skofronick-Jackson et al. 2017), an ongoing NASA

earth system science mission, is dedicated to quantifying pre-

cipitation on a near-global basis. The GPM Core Observatory

(GPM-CO) was launched in 2014 with the Dual-FrequencyCorresponding author: Lisa Milani, lisa.milani@nasa.gov
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Precipitation Radar (DPR; Iguchi 2020; Toyoshima et al. 2015)

and the GPM Microwave Imager (GMI; Draper et al. 2015;

Wentz and Draper 2016) on board. The GPM-CO flies on a

non-sun-synchronous orbit (658 inclination angle), allowing

precipitation retrievals up to the Arctic and Antarctic Circles.

Detecting snowfall is one of the critical GPM mission re-

quirements. Both DPR and GMI have shown snowfall detec-

tion capabilities (Adhikari et al. 2018; Casella et al. 2017;

Ebtehaj and Kummerow 2017; Panegrossi et al. 2017; Rysman

et al. 2018; You et al. 2017; Petersen et al. 2020). However,

different sampling strategies, sensor sensitivities, phase classi-

fication, and other algorithm assumptions strongly influence

global snowfall detection statistics (Skofronick-Jackson et al.

2019). In particular, the Goddard ProfilingAlgorithm (GPROF;

Kummerow et al. 1996; Kummerow et al. 2015), which retrieves

precipitation rates using passive microwave (PMW) observa-

tions, generally underestimates both snowfall detection and

quantification when compared to active remote sensing sensor

snowfall products. Previous studies based on theoretical ana-

lyses (Skofronick-Jackson and Johnson 2011) and radiometer

observations (Panegrossi et al. 2017; You et al. 2017) showed

that low-frequency channels (10–37GHz) contain limited snow

detection information compared to higher frequencies (89–

183GHz). In contrast, the channels at 183.31 6 3, 183.31 6 7,

and 166GHz are respectively more important because of their

sensitivity to frozen hydrometeors and increasing ability to

travel through the atmosphere to sense shallow events, es-

pecially for low total precipitable water (TPW) conditions.

Numerous previous studies have demonstrated the potential

of the use of observed brightness temperature (TB) differ-

ences in channel pairs with weighting functions that peak at

different atmospheric levels (e.g., 183.31-GHz band chan-

nels) for snowfall detection and retrieval (e.g., Kongoli et al.

2015). On the other hand, the 166-GHz polarization signal is

also analyzed, since it can provide impactful information

content for snowfall detection also at higher latitudes (e.g.,

Gong and Wu 2017; Panegrossi et al. 2017).

Satellite-based snowfall detection performance can also be

influenced by snowfall regimes, with intense, deeper events

accompanied by higher columnar water vapor amounts typi-

cally easier to detect than light and/or shallow snowfall events

that occur in drier ambient conditions (e.g., Skofronick-

Jackson et al. 2013). Several recent studies highlight dif-

ferent snowfall modes both from satellite (Kulie and Milani

2018; Kulie et al. 2016; West et al. 2019; Kulie et al. 2020)

and ground-based radar perspectives (Pettersen et al. 2018;

Pettersen et al. 2020). Deeper cloud structures that are

characteristic of midlatitude winter cyclones are generally

easier for PMWs to detect due to strong scattering signals

from ice particles and higher reflectivity values that can be

detected by radars with reduced sensitivity. Shallow snow-

fall, however, presents unique PMW detection complexities

at higher latitudes since its radiative signal can be difficult to

discern over snow-covered surfaces. Depending on radar

sensitivity and near-surface blind zone extent, spaceborne

radars might also not detect shallow snow events because

of lighter radar reflectivities and extremely shallow cloud

tops (Maahn et al. 2014; Pettersen et al. 2020).

Compounding potential detection difficulties, shallow con-

vective snow has important hydrological, ecological, and so-

cioeconomic impacts. Lake-effect snow (LES) is a form of

shallow convective snow produced during cold-air outbreaks,

whereby cold air interacts with unfrozen or partially frozen

bodies of water. Shallow, lake-induced convection can persist

over the same area for days, accumulating large amounts of

snow over neighboring land regions. This snowfall mode

commonly occurs in the U.S. Great Lakes region. Several

studies have covered this topic from a ground-based or nu-

merical model perspective (Liu and Moore 2004; Notaro et al.

2013; Scott and Huff 1996; among others). Scott and Huff

(1996), for example, demonstrated that precipitation amount

during winter can be 50% higher downwind of Lakes Ontario

or Erie and up to 100% higher over the eastern shore of Lake

Superior compared to what is expected without the contribution

of LES. Pettersen et al. (2020) showed almost 80% occurrence

and 50% contribution to annual snowfall accumulation in the

upper Great Lakes. Analyzing the past 6 winter seasons (2014–

20), on average 10 intense LES events [identified by the NWS

(2020) in their ‘‘Lake-effect snow event archive’’], affect the

lower Great Lakes region every year, with an average total

yearly accumulation of 405 cm (with a mean 24h accumulation

of 28 cm) for Lake Erie and 615 cm (with a mean 24h accumu-

lation of 47 cm) for Lake Ontario. Spaceborne radar datasets

also highlight LES prevalence globally with distinct seasonal

cycles and notable shallow convective maxima located over

extended high-latitude oceanic regions (Kulie and Milani 2018;

Kulie et al. 2016, 2020). The Kulie et al. (2016) and Kulie and

Milani (2018) CloudSat studies showed that 36% of snowfall

events and 18% of snowfall amount are globally related to

shallow convective events and they can increase to over 50% of

the annual estimated surface snowfall flux on a regional scale.

However, surface temperatures and columnar water vapor

levels associated with LES are usually very low (e.g.,, 5mm),

with low water vapor amounts portending potential PMW

detection difficulties. For instance, Panegrossi et al. (2017)

analyzed parameters influencing the 166-GHz polarization

difference and found that snowfall detection over land be-

comes problematic when TPW is below 3.6mm.

Further PMW studies dedicated specifically to shallow

convective snow are currently lacking. This work therefore

focuses on intense [defined by Notaro et al. (2013) and Liu and

Moore (2004) as events with 24 h snow accumulation .10 cm]

shallow convective snowfall event detection and quantification

from PMW observations over the U.S. Great Lakes region.

The availability of an operational ground-based radar net-

work over the region makes it the perfect test bed for

comparing GPROF precipitation retrievals to the GPM

Ground ValidationMulti-Radar Multi-Sensor (GV-MRMS;

Kirstetter et al. 2018). The specific motivational questions

of this study are as follows:

d Do distinctive multifrequency passive microwave brightness

temperature signals accompany intense LES events?
d How does GPROF perform for these extreme snow-producing

events?
d What factors affect GPROF performance?
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d What algorithm components can be improved to mitigate

potential shortcomings?

In particular, this study presents two extremeLES cases over

the lower Great Lakes region, with National Weather Service

(NWS) reported measured accumulation of about 124 cm in

24 h south of Buffalo, New York, for the first case study and

about 140 cm (103 cm in 24 h) downwind of Lake Ontario for

the second case, showing hourly accumulation 1.2–3.5 times the

average hourly accumulation of intense LES events that occur

over the region.

The next section introduces the sensors used in this study

and the characteristics of the GPROF algorithm, followed by a

description of the GV-MRMS ground evaluation dataset. The

two extreme LES events and accompanying GPM/GV-MRMS

analyses are presented in section 3. Section 4 focuses on results

and recommendations to improve GPROF retrievals. The

paper ends with a discussion and concluding remarks.

2. Data and products

GPM-CO is the central component of a constellation of

research and operational satellites built with several interna-

tional collaborators. It orbits at an altitude of 407 km and

carries the GMI and DPR. The GMI is a conical scanning ra-

diometer with a swath of 880 km. It is outfitted with 13 channels

from 10.65 to 183.16 7GHz, with spatial resolutions spanning

from 32.1 km 3 19.4 km for the low-frequency channels to

5.8 km3 3.8 km for the high-frequency channels (Draper et al.

2015). The availability of high-frequency channels (166-GHz

V-pol and H-pol and 183.31 6 3- and 183.31 6 7-GHz V-Pol)

provides valuable information about snowfall given their high

ice/snow scattering sensitivity. Together with GMI, the GPM-

CO carries the first dual-frequency precipitation radar.

Although DPR products are not directly used in this study,

the a priori GPROF database built using DPR and other in-

strument precipitation estimates constitutes a crucial compo-

nent of the present work. DPR characteristics are described in

detail in section 2c.

a. GPROF retrieval algorithm

The GPROF algorithm (Kummerow et al. 1996, 2001, 2015;

Meyers et al. 2015) serves as the operational precipitation re-

trieval for the GPM PMW sensor constellation. This scheme

estimates the probability of precipitation relying on a Bayesian

approach using an a priori knowledge (i.e., an a priori proba-

bility) to link the TB vector and occurring atmospheric state.

The a priori knowledge is stored in a so-called a priori data-

base, enabling easy access to previously established links be-

tween TBs and corresponding precipitation rates. GPROF

relies on these links to form a weighted mean of the database

precipitation rate using the difference between the a priori and

observed TB elements to construct the appropriate weights.

Details on the Bayesian theory can be found inRodgers (2000),

while further details about GPROF’s evolution are presented

inKummerow et al. (1996, 2001, 2015) andMeyers et al. (2015).

To ensure a robust link between surface precipitation rates

and corresponding radiative signatures at the top of the

atmosphere, the version-5 (V5) operational a priori database

relies on version-4 (V4) DPR Ku precipitation retrievals over

vegetated surfaces, inland waters, and coastlines (section 2c)

and on the V4 DPR-combined (CMB) algorithm (Grecu et al.

2016) over oceans, sea ice, and sea ice/ocean boundaries. The

database is built with one year of GPM data (DPR and CMB),

from September 2014 to August 2015. GV-MRMS (section 2b)

estimates are used over snow-covered surfaces. The database is

built matching two years of GV-MRMS data (from April 2014

to August 2016) with satellite overpasses. The precipitation

phase is determined by GPROF [following the Sims and Liu

(2015) methodology] so as to have a common classification

method with the other two a priori databases (DPR and

CMB based).

The mechanics behind constructing the GMI sensor a priori

information include using observed TBs (Kummerow et al.

2011) and ancillary information like TPW, surface type, and

2-m temperature (T2m). The three ancillary elements partition

the a priori database and constrain the TB–precipitation-rate

relationship. In this process, surface types are obtained from an

SSM/I-observed emissivity climatology (Aires et al. 2011) and

its daily updates by NOAA’s AutoSnow product (Romanov

et al. 2000). GPROF can classify 14 different classes: 5 for in-

creasing vegetated land, 4 for increasing snow-covered surfaces

(minimum, low, moderate, and maximum snow cover), sea ice,

ocean, standing waters, coastlines, and sea ice edge. These

classes come from a cluster analysis, purely empirical self-

grouping of emissivity characteristics (Prigent et al. 2006). The

TPW and T2m parameters are obtained from the Global

Atmospheric Analysis (GANAL; JMA 2000) and the European

Centre for Medium-RangeWeather Forecasts (Dee et al. 2011)

reanalysis datasets for the operational and the climatological

GPROF outputs, respectively.

For this study, the 1C-R-GMI product (TBs) and the clima-

tological 2A-GPROFGMI (precipitation rates and environ-

mental information) have been used. These datasets are freely

available through the NASA Precipitation Processing System

(PPS) data archive (https://storm.pps.eosdis.nasa.gov/storm/).

b. GV-MRMS

TheMRMS system uses precipitation observations from the

polarimetric Next Generation Weather Radars (NEXRAD)

and automated rain gauge networks in the conterminous United

States (CONUS) and southern Canada (Zhang et al. 2011).

MRMS generates quantitative precipitation estimation (QPE)

and precipitation phase products from observed radar re-

flectivities at a 0.018 horizontal resolution every 2min. MRMS

runs operationally at the National Centers for Environmental

Prediction. Temperature and humidity analyses from the Rapid

Refresh (RAP; Benjamin et al. 2004) model are used to segre-

gate surface rain from snow. The radar QPE uncertainty de-

pends on various factors such as beam blockage, beam height,

vertical structure of precipitation, etc. (Kirstetter et al. 2015).

MRMS internal procedures mitigate the impact of these factors.

To quantify snow rates,MRMSuses a fixed reflectivity–snowfall

rate (Z–S) relationship:

Z5 75S2 . (1)
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The minimum reflectivity threshold is 5 dBZ for snow (cor-

responding to a liquid equivalent snowfall rate of;0.2mmh21).

A fixedZ–S relationship obviously causes uncertainties andmay

require modifications for LES QPE, but MRMS represents a

convenient proxy for snowfall intensity. Proposed MRMS

advancements will incorporate uncertainty as an integral part

of QPE with probability distributions of precipitation rates

(Kirstetter et al. 2015).

To derive GV-MRMS precipitation products used for sat-

ellite purposes, the 0.018-resolution MRMS-defined precipita-

tion pixels coincident with GPM-CO overpasses over the

United States are averagedwithin eachGPM-GMI footprint to

match the larger satellite field of view (e.g., Kirstetter et al.

2012). The precipitation reference dataset is refined by con-

servatively filtering precipitation rates associated with radar

beam height above 2.5 km above ground level in order to

mitigate uncertainties in the relation between ice aloft and

surface snowfall. The product just described represents the

precipitation-rate reference for the GPROF a priori database

over snow-covered surfaces (see section 2a). It is worth noting

that the 0.2mmh21 (5 dBZ) minimum threshold is applied to

the MRMS product at its native 0.018 resolution, so in the av-

eraged GV-MRMS product matching the GPM-GMI spatial

resolution, lower precipitation rates (also, 0.2mmh21) could

be found. For database purposes, the precipitation phase of

GV-MRMS observations is determined by the Sims and Liu

(2015) method directly within the GPROF algorithm.

Despite the uncertainties, GV-MRMS retrievals are the best

available QPE dataset over CONUS and are thus used in the

present study to evaluate GPROF performance. For this purpose,

we use theGV-MRMSprecipitation phase identificationbasedon a

RAP surface (wet bulb) temperature thresholds of 28 (08) C. For
the following analysis, a 0.1mmh21 threshold was chosen for

GV-MRMS to take into account the reflectivity threshold [Eq. (1)]

and theaveragesofGV-MRMSrateswithinaGPM-GMI footprint.

c. DPR

The DPR consists of Ku-band (13.6GHz) and Ka-band

(35.5GHz) channels. The combination of the two better con-

strains the particle size distribution, which in return reduces the

quantitative precipitation estimation uncertainties. The DPR’s

spatial resolution is 5 km at nadir and it scans with a 245- and

120-km swath for Ku andKa bands, respectively. TheDPR-Ku

precipitation product is used to build the a priori database

for vegetated surfaces, inland waters, and coastlines. With a

detection threshold of 12 dBZ (Hamada and Takayabu

2016; Skofronick-Jackson et al. 2019) the instrument is ca-

pable of detecting surface precipitation rates of approxi-

mately 0.5 mm h21 (Kozu et al. 2001; Kubota et al. 2016).

3. Case studies

Seven similar LES events over the lower Great Lakes region

were manually selected among the common events in the Buffalo

lake-effect snow archive, theGPMoverpasses during the 2014–15

period and the MRMS available data. Two events with opposite

behavior are analyzed in this study to possibly identify the

weaknesses of GPROF on detecting and quantifying LES.

These specific cases are chosen for two reasons. First, they

are both long-lived snowfall events with deeper cloud struc-

tures (;3–4-km cloud-top heights; Figs. 2b and 6b) and more

extreme snowfall rates than the global population of cumuli-

form snow events (Kulie et al. 2016). These events therefore

serve as appropriate illustrative cases to interpret multifre-

quency GMI signatures associated with extreme LES events.

Second, both events did occur within the observational period

considered in the GPROF a priori database. In particular, for

the first case (orbit 4140) GV-MRMS data are included in the a

priori database, while for the second case (orbit 4914) both

DPR and GV-MRMS information are included. This selection

criterion thus allows GPROF performance to be assessed,

specifically if the algorithm can correctly convert GMI TBs

into a physically realistic retrieval for this unique class of

extreme winter precipitation. The analysis comprises the

following components: GMI TB observational descriptions,

visual comparisons of precipitation patterns, event detection

and QPE assessments, statistical scores of detection ability,

and a GPROF–GV-MRMS correlation (r) analysis. The sta-

tistical scores used for this analysis are the false alarm ratio

(FAR), Heidke skill score (HSS), and critical success index

(CSI), all based on the comparison between the actual retrieval

(GPROF estimates) and a reference value (GV-MRMS in our

case). Detailed description of statistical scores can be found in

Nurmi (2003).

a. 20 November 2014 (GPM-CO orbit 4140)

1) GMI OBSERVATIONAL ANALYSIS

The first case study is a LES event that occurred on 20–

21 November 2014 over Lakes Erie and Ontario in the lower

Great Lakes region. This event formed within a cold-air out-

break behind an occluded frontal system that produced un-

seasonably cold temperatures. T2m ranged between;263 and

274K during the event, with T2m values at the higher end of

this range when the GPM-CO overpassed near 1820 UTC

20 November 2014 (Fig. 1a). Upper-air observations and re-

analysis datasets revealed TPW values between 4 and 5mm on

20 November—a dry postfrontal ambient environment that is

typically associated with LES events1 (Fig. 1b). Lake Erie and

Ontario surface temperatures ranged from ;78 to 128C.2 The
relatively warm lake surfaces and cold 850-hPa temperatures

(; 2128 to 2148C) produced sufficient low-level instability to

initiate boundary layer convection. Postfrontal winds flowed

across the long axis of the lakes to organize and sustain shallow

(;3–4 km radar-indicated cloud depths; Fig. 2b), yet con-

vectively robust, LES bands.

NEXRAD radar observations from the Buffalo (KBUF)

and Fort Drum (KTYX), New York, sites near 1820 UTC

1 Twice-daily radiosondes are launched at the Buffalo National

Weather ServiceWeather Forecast Office (http://weather.uwyo.edu/

upperair/sounding.html).
2 Daily lake surface temperature analyses are available from the

NOAAGreat Lakes Environmental Research Laboratory (https://

coastwatch.glerl.noaa.gov/glsea/glsea.html).
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20 November 2014 indicated respective long lake-axis-parallel

(LLAP; Steiger et al. 2013) snowbands over both Lakes Erie

and Ontario with radar reflectivities exceeding 30 dBZ in the

strongest convective cores (Fig. 2a). Reflectivities increased

across the lakes as the cumulative effect of air/lake latent and

sensible heat exchanges, combined with mesoscale influences,

progressively invigorated boundary layer convective pro-

cesses. Convective vigor was further confirmed by multiple

lightning reports during this event. These bands persisted for

almost 24 h over both lakes, producing more than 120 cm of

snow accumulation south of Buffalo for the entire event du-

ration.3 Significant snowpack already existed over Lake Erie

lake-effect snowbelt regions, the inland regions east of Lake

Ontario, and the south-central Canadian Ontario province

from a previous LES event (not shown). No snow cover was

diagnosed over the southeast quadrant of the scene (as also

shown in Fig. 4d).

Multifrequency GMI TBs are first analyzed to assess whether

GMI observes distinctive radiometric signatures for this con-

vective snow event (Fig. 3). All window channels show evidence

of large land surface variability, with higher TBs in the sparsely

snow-covered/vegetated southeastern portion of the domain,

and lower TBs in presence of deep dry snow around the lakes.

Lower-frequency GMI channels (10–37GHz) do not typically

display precipitation-related signatures for LES (Skofronick-

Jackson et al. 2013). Warmer 19-, 23-, and 37-GHz TBs relative

to the radiometrically cold lake surface background, however,

are noted over both lakes due to liquid or mixed-phase pre-

cipitation (not shown). Similar TB emission signals are also

found in 89- and 166-GHz channels over the lakes (Figs. 3a–f)

as a result of cloud water emission. For instance, 89-GHz

vertical (V) polarization TB (TB89V) values are ;5–15K

higher over central and eastern Lake Ontario relative to

surrounding cloud-free observations (Fig. 3a; red circle).

TB89V 2 TB89H differences (DTB89) are also noticeably

lower (;30–35K) within overlake clouds compared to sur-

rounding 50–60-K DTB89 values that accentuate highly polar-

ized surface water features under clear conditions (Fig. 3c;

red circle).

In addition to cloud water emission sensitivity, GMI higher-

frequency (89–183.31GHz) channels delineate likely surface

snowfall regions since they are progressively more sensitive to

frozen hydrometeor scattering signals. Warmer TBs from pos-

sible cloudwater emission at 89 and 166GHz evolve into distinct

TB depressions (i.e., colder TBs within snowbands compared to

surrounding nonsnowing observations) as cloud thickness,

snow/ice particle size, integrated columnar ice paths, and

surface snowfall rates increase over the eastern lake sur-

faces. The snowband observed by NEXRAD over eastern

Lake Erie (79.58–77.58W) and extending inland for almost

100 km (Fig. 2) is accompanied by GMI 166-GHz TB de-

pressions reaching;30 K (Figs. 3d,e; red circles). Lower TB

depressions are also apparent at 89 GHz. Polarization dif-

ference signatures are also noteworthy over land in the Lake

Erie snowband. At 166 GHz (DTB166) it is observed far in-

land (Fig. 3f; yellow circle), while at 89 GHz (DTB89) it is

only apparent near the immediate Lake Erie shoreline

(Fig. 3c; yellow circle). Similar 89- and 166-GHz signals,

albeit with lower TB depression magnitudes, are also evi-

dent in the NEXRAD-observed Lake Ontario snowband

that extends over most of the lake and over the Tug Hill

Plateau region in upstate New York (778–748W).

The 183.31 6 7V- and 183.31 6 3V-GHz channels provide

further evidence that distinct GMI signals accompany this

LES event. These channels offer increased ice/snow parti-

cle scattering sensitivity, but their respective locations near

the 183.31-GHz water vapor absorption line typically pro-

vide information from mid- to upper-atmospheric levels

and therefore might not be deemed appropriate for shallow

precipitation remote sensing applications. However, very

low TPW values allow 183.31-GHz weighting functions to

peak at lower atmospheric levels and therefore respond to

the LES bands (e.g., Edel et al. 2019). Furthermore, these

channels are somewhat immune to surface-related emis-

sions since sufficient boundary layer water vapor exists. As

shown in Figs. 3g–i, significant TB183.31 depressions corre-

spond to the Lake Erie and Ontario snowbands. TB183.3167

depression magnitudes are larger than TB183.3163 since the

183.31 6 7-GHz channel weighting function peaks at lower

atmospheric levels (Figs. 3g,h; blue circles). TB183.3167 and

TB183.3163 differences (DTB183.31) effectively isolate the

LES bands, with DTB183.31 values below 215K in the most

FIG. 1. ECMWF reanalysis (a) T2m and (b) TPW for the GPM-CO overpass near 1820UTC 20 Nov 2014. T2m and

TPW from ECMWF are provided as GPROF product parameters.

3 Snow accumulations reported by the Buffalo NationalWeather

Service Weather Forecast Office.
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intense snowfall locations (Fig. 3i; blue circles). Furthermore,

DTB183.31 signals over land are much more distinctive than

DTB89 (Fig. 3c) and DTB166 (Fig. 3f). Similar to 89- and 166-GHz

analyses, the Lake Erie snowband is inferred to be more in-

tense than the Lake Ontario snowband due to larger DTB183.31

magnitudes.

Interestingly, the collective TB observations also infer

different processes operating within the respective snow-

bands. For instance, the Lake Erie band shows consistent

scattering signals over a substantial part of the lake and

over land. Conversely, significant high-frequency GMI

scattering effects in the Lake Ontario snowband are only

apparent over land despite elevated NEXRAD radar reflec-

tivity values over the eastern part of the lake, thus hinting at

significant land/orographic enhancements and/or overlake

microphysical composition differences compared to the Lake

Erie snowband. Positive DTB183.31 magnitudes elsewhere in

the scene infer higher TB183.3167 values and are mostly asso-

ciated with nonprecipitating or lightly precipitating observa-

tions. A few positive DTB183.31 values, however, correspond to

higher precipitation rates and reflect the complicating contri-

bution of supercooled liquid water within snowbands that

dampen scattering effects (Panegrossi et al. 2017). TB183.3167

are demonstrably higher than TB183.3163 where the scene

is not affected by lake-effect clouds because of the com-

bined background surface (as in the southeastern scene

quadrant) and water vapor emission. Both lakes locally in-

crease boundary layer water vapor content, as indicated by

FIG. 3. GMI (a) TB89V, (b) TB89H, and (c) DTB89 (K) for 1820 UTC 20 Nov 2014 (GPM orbit 4140). GMI (d) TB166V, (e) TB166H, (f)

DTB166, (g) TB183.3163, (h) TB183.3167, and (i) DTB183.31 are also shown. Circles are added here to highlight some of the important features

described in the text.

FIG. 2. NEXRAD level-III products (a) base scan composite radar reflectivity and (b) echo-top height, using data

from the Buffalo (KBUF) and Fort Drum (KTYX) sites at 1818 and 1821 UTC 20 Nov 2014; 50-, 100-, and 150-km

ranges are also shown.
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higher TB183.3167 values lake surfaces that are not significantly

covered by lake-effect clouds (Fig. 3h).

2) GPROF PERFORMANCE

The previous section highlighted clear multifrequency TB

signals in LES bands for the 20 November 2014 event. We

then evaluated GPROF’s ability to successfully detect this

type of snowfall event and provide meaningful snowfall rate

estimates. Figure 4 shows the surface precipitation retrievals

from both GV-MRMS (Fig. 4a) and the GPROF operational

algorithm (Fig. 4b). All precipitation rates are assumed to be

liquid-equivalent snowfall rates since this event produced

prolific snowfall totals. Moreover, reanalysis T2m (Fig. 1a)

and the GPROF frozen precipitation parameter (not shown),

suggest that snow is the predominant precipitation type.

Lighter mixed precipitation, however, cannot be entirely

discounted during the GPM-CO overpass time in shallow

cloud features located over the central lakes due to possible

emission signatures observed in lower-frequency channels

(not shown).

GPROF clearly indicates light precipitation over non-

precipitating regions according to GV-MRMS (Figs. 4a,b). It is

worth reminding that GV-MRMS considers only $ 5 dBZ

observations (precipitation rate $ 0.2 mm h21), but, con-

sidering beam filling issues into account in matching GMI

footprint, 0.1 mm h21 is considered as the minimum GV

MRMS threshold. Therefore, rates below 0.1 mm h21 have

been filtered out in the GV-MRMS product for this analysis.

Operational V5 GPROF has a lower precipitation limit of

0.01mmh21. Furthermore, GPROF will tend to overestimate

widespread light precipitation as an artifact of the Bayesian

retrieval mechanics.

When compared pixel by pixel (not shown), operational

GPROF and GV-MRMS show a good correlation (r . 0.6)

above 0.1 mm h21 (0.3 mm h21 for GV-MRMS) although

with a general underestimation shown by GPROF. Below

these thresholds, GV-MRMS precipitation rates decrease

till 0 mm h21, while the corresponding GPROF values are all

included within the 0.06 and 0.1 mm h21 interval justifying

the widespread low precipitation rates shown by GPROF

where GV-MRMS shows no precipitation.

Before interpreting GPROF snowfall rate estimates, we

considered the algorithm quality flag (QF; introduced by the

developers in V5) to analyze the precipitating pixels quality.

QFs with values 0 or 1 indicate reasonable performance and

are deemed usable in the analysis. QFs above 1 mean poor or

indeterminate quality and developers suggest not to consider

these retrievals for individual events (Passive Microwave

Algorithm Team Facility 2017). Most of the light precipitating

pixels are associated with QF 5 2 (not shown), which is ‘‘use

pixel with extreme care over snow covered surface.’’ Following

the developer suggestion, the QF 5 2 pixels were at first fil-

tered out, but this method resulted to be too conservative and

lead to completely miss precipitation over land. For this rea-

son, in an effort to improve GPROF comparisons with GV-

MRMS, we decided to address the problem and offer a quick

solution to users dealing with the current product version (V5),

till some improvements will be implemented in future ver-

sions. We opted for a simple precipitation-rate threshold (PRT)

approach (Kirstetter et al. 2014). Systematic HSS analyses

FIG. 4. (a) MRMS-GV snowfall rate over Lakes Erie and Ontario on 20 Nov 2014 at 1820 UTC (orbit 4140),

(b) GPROF precipitation rate (using the SurfPrecip parameter from the operational product), (c) GPROF PRT

precipitation rate ($0.08mmh21), and (d) surface classification as from the GPROF SurfType parameter: Sea ice

edge (SIE), land/ocean or water coast (C), standing water (SW), minimum snow cover (MinSC), low snow cover

(LowSC), moderate snow cover (ModSC), maximum snow cover (MaxSC), vegetation (V; 5 classes), sea ice (SI),

and ocean (O).
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between operational GPROF and GV-MRMS suggest a suit-

able PRT value of 0.08mmh21 for this event (corresponding to

the best HSS score after testing all the possible precipitation

thresholds from 0 to 1mmh21 at 0.01mmh21 increments). This

threshold is also consistent with the 0.1mmh21 threshold ap-

plied to GV-MRMS for this study. PRT results (Fig. 4c)

present a precipitation structure pattern much more similar to

GV-MRMS (Fig. 4a) than the operational product (Fig. 4b). The

PRTmethod improves all of the statistical scores, increasing the

CSI (0.23) and HSS (0.26) and decreasing the FAR (0.57) rela-

tive to operational results (Table 1).GPROF false detections are

still abundant, but PRT suitably comprises false detections and

the risk of missing actual precipitation. The GPROF and GV-

MRMS correlation index using PRT slightly decreases (r5 0.61)

relative to the operational product (r 5 0.65) but can still be

considered a reasonable result for a PMWalgorithm retrieval of

solid precipitation compared to other algorithms (Meng et al.

2017; Rysman et al. 2019).

The climatological emissivity given for GPROF, combined

with the AutoSnow product update, classifies the surface ad-

jacent to Lakes Erie and Ontario as snow covered (Fig. 4d).

Additionally, large areas are classified as coastline over the

water and the land directly surrounding Lakes Ontario and

Erie. Both snowbands are partitioned almost equally between

coastline and snow-covered surfaces, thus prompting the

GPROF algorithm to use both its DPR and MRMS a priori

databases, respectively. One of GPROF’s strengths is that it

shows precipitation pattern continuity over different surface

types, despite the fact that the retrieval uses different a priori

conditions.

b. 9 January 2015 (GPM-CO orbit 4914)

1) GMI OBSERVATIONAL ANALYSIS

The second case considered is another extreme multiday (9–

10 January 2015) LES event. Postfrontal environmental con-

ditions were similar to the first case, albeit with colder T2m

values (e.g., ,263K upwind of Lakes Erie and Ontario;

Fig. 5a) and slightly lower TPW values (e.g., 3–4mm; Fig. 5b).

The January event timing and extremely cold temperatures

enabled ice development over western portions of Lake Erie, but

the central and eastern lake remained ice-free (not shown). Lake

Ontario was also mostly ice-free, except for some nearshore lo-

cations. With optimally aligned winds interacting with sufficient

open lake surfaces and 850-hPa temperatures between 2158
and 2238C, LES bands developed over both lakes.

Figure 6 shows KBUF and KTYX NEXRAD observations

near 1230UTC9January2015 coincidentwithaGPM-COoverpass.

The Lake Erie snowband was oriented in a southwest–northeast

direction directly over coastal land areas, while the Lake

Ontario band was located mostly over water near the northern

lake shoreline. The Lake Erie snowband appeared more

intense (maximum reflectivities of.30 dBZ) at this juncture

compared to its Lake Ontario counterpart, but total snow

accumulations were much higher downwind of Lake Ontario

(;140 cm) compared to Lake Erie (;60 cm). This disparity can

easily be explained with the instantaneous acquisition of the

radar reflectivity that could not reflect the final accumulation

recorded by the NWS stations and radar precipitation accu-

mulation products. Land surfaces in the region were entirely

snow-covered, with higher snowpack values located over lake-

effect snowbelt regions and over a broad swath of the Canadian

Province of Ontario from recent synoptic and LES events

(see Fig. 8d for GPROF surface classification).

The GPM-CO captured this event near 1226 UTC 9 January

2015 (Fig. 7). Similar to the first event, a significant TB re-

sponse is noticeable for all GMI high-frequency channels. The

Lake Erie snowband exhibited 20–30K TB depressions in most

high-frequency channels. For instance, lower 89-GHz TBs

were collocated with the snowband and were accentuated by

radiometrically warmer background surface in the southeast-

ern coastline and inland cloud-free areas (Figs. 7a,b; blue cir-

cles). Nearby cloud-free Lake Erie surfaces displayed colder

and highly polarized DTB89 signals (Fig. 7c). Similar 166-GHz

trends were observed over the Lake Erie snowband, but with

colder TBs (Figs. 7d,e; blue circles). Unlike the 89-GHz

channels, 166-GHz TB polarization differences were associ-

ated with the Lake Erie snowband over coastal land regions

(Fig. 7f; yellow circle). It is worth noting the different 89- and

166-GHz TB signatures over interior Canada (northwest part

of the scene; Figs. 7a,b,d,e; red circles) compared to the

southeastern quadrant of the scene. There are many factors

thatmay contribute to the lower TBs observed in the northwest

portion of the domain, such as colder skin temperature (as

shown by MERRA 2 reanalysis, not shown), or presence of

nonprecipitating clouds (as indicated by GOES IR/VIS images

and by the Canadian Exeter, Ontario, radar, not shown).

However, the observed TB depression at all frequencies (in-

cluding 10 and 19GHz), and the strong polarization signal can

be attributed to the snowpack properties in that region, clearly

different from the southeastern portion of the domain, as evi-

denced by the GMI surface emissivity maps (not shown,

Munchak et al. 2020). The 183.31-GHz channels also exhibited

sensitivity to frozen hydrometeor scattering, with DTB183.31

values between 210 and 215K effectively highlighting the

most intensive snowfall regions (Fig. 7i; blue circles).

Similar 183.31-GHz TB attributes were collocated with the

snowband over Lake Ontario and along the axis of the Saint

TABLE 1. Statistical scores comparing GPROF precipitation rates [operational (Op) and applying PRT] with GV-MRMS precipitation

product for the two cases. The PRTs considered case by case are also shown.

HSS FAR CSI r

Threshold (mmh21) Op PRT Op PRT Op PRT Op PRT

4140 0.08 0.09 0.26 0.77 0.57 0.18 0.23 0.65 0.61

4914 0.11 20.01 0.11 0.80 0.54 0.16 0.10 0.43 0.51
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Lawrence River. Both 89- and 166-GHz TB trends over Lake

Ontario followed similar patterns as the previous case study,

with warmer emission signals against the cold lake background

evolving into scattering signals. Reduced DTB89 and DTB166

magnitudes over Lake Ontario surfaces also coincided with

lake-effect clouds and snowbands. Interestingly, 166-GHz and

DTB183.31 scattering signatures accompanying the Lake

Ontario snowband appeared slightly stronger than the Lake

Erie band despite obviously weaker NEXRAD character-

istics (Fig. 6). This disparity might reflect NEXRAD range-

dependent artifacts related to the Lake Erie band’s proximity

to the KBUF radar compared to the Lake Ontario band to

KTYX radar site distance. Furthermore, the KTYX radar is

physically located on the elevated Tug Hill Plateau ;350m

higher above sea level than the KBUF site.

2) GPROF PERFORMANCE

As opposed to the first case study, GPROF classifies the

surface as coastline on both southern sides of the lake shores

(Fig. 8d), even though inland surfaces near the lake are more

likely snow-covered since the GPM-CO orbit occurs on the

second day of a three-day extreme snowfall event. As a

matter of fact, the National Weather Service Snow Analysis

(NSA; NWS 2019) indicates that surfaces on the south

and east sides of the lakes were covered by 10–25 cm of snow

on 8 and 9 January 2015. The NSA also estimated snowpack

temperatures between 258 and 2208C and no melting. We

can then speculate that the AutoSnow product did not detect

surface snowpack (note that AutoSnow does not provide any

output under cloudy conditions). Therefore, GPROF uses the

DPR a priori database for pixels classified as coastline or

land for this case study, including most of the southern shore

of the lakes where NEXRAD observes intense snowfall.

Recall that GPROF used the GV-MRMS a priori database

for snow-covered surfaces correctly defined in the previous

case study (Fig. 4d).

The pixel-by-pixel comparison between operational GPROF

and GV-MRMS (not shown), in this case does not show any

correlation and while GV-MRMS shows rates up to 1mmh21

most GPROF precipitation rates lie within 0.03 and 0.11mmh21.

The PRT method is tested (PRT 5 0.11mmh21) but does

not produce a precipitation pattern similar to the GV-MRMS

for this case (Fig. 8c). Table 1 shows the statistical GPROF-

GV-MRMS scores obtained after applying the PRT filter. The

detection scores are very low for the operational GPROF

(HSS 5 20.01) and slightly better for PRT (HSS 5 0.11), but

overall reflect poor PMW algorithm performance. FAR is also

consistently elevated, with values of 0.80 and 0.54 for the op-

erational GPROF and PRT, respectively. Correlation values

improve from 0.43 (operational GPROF) to 0.51 when the

PRT is applied.

It is worth notingDPR data are available and included in the

DPR a priori database for this case. The DPR covers the inner

part of GMI swath, providing precipitation estimates only over

Lake Ontario (Fig. 8e). The DPR shows a snowband similar to

the GV-MRMS structure with moderate to intense rates. The

storm-top height (Fig. 8f) confirms that DPR can detect LES

events with vertical extension between 1 and 4 km (at least for

the central pixels of the swath). Despite the exact GV-MRMS

and DPR surface precipitation rates being included in the a

FIG. 5. As in Fig. 1, but for 1226 UTC 9 Jan 2015.

FIG. 6. As in Fig. 2, but for 1228 and 1224 UTC 9 Jan 2015.
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priori databases for this event, GPROF assigns low Bayesian

weights to those profiles, making the weighted average more

centered on similar profiles that are most likely not precipi-

tating. The result is a very smoothed precipitation rate and

pattern that does not detect snowfall when strong filters are

applied. As already mentioned, the case studies considered in

this work have been purposefully chosen within the period

included in the a priori databases to show that even if GMI TBs

clearly indicate multifrequency signatures and DPR and

GV-MRMS provide surface snowfall rate estimates in their

respective a priori databases, GPROF cannot convert that

information into a physically consistent or realistic retrieval.

Because of the a priori database searching method within a

specific surface, T2m and TPW subset, misclassifying the

surface type or the modeled environmental conditions

heavily affects the algorithm output. These potential issues

and possible solutions for users and algorithm developers

are investigated further in section 4.

4. Analysis of GPROF retrieval components

In the following subsections, we will analyze the most im-

portant algorithm components and their potential role in the

performance inconsistencies outlined in section 3. Algorithm

improvement pathways are also offered.

a. A priori database representativeness

Since GPROF retrievals fundamentally rely on a priori GMI

radiance–surface-precipitation-rate information, the representa-

tiveness of the a priori databases for intense LES events is in-

vestigated. Considering a 0.1mmh21 threshold for precipitation

(in agreement with the GV-MRMS threshold used for this

study and very close to the PRT threshold for the case studies

analyzed), Fig. 9 shows the 2D joint distribution of precipi-

tating elements in the a priori databases. Considering the two

cases presented in section 3 and the radiosonde data of several

intense LES events, we consider TPW 5 5mm and T2m 5
273K as appropriate thresholds for LES event conditions over

the analyzed region. The thresholds are chosen based on 61

intense LES events reported by the Buffalo NWS office (NWS

2020) over the past 6 winter seasons (2014–20), where 80% of

the events showed TPW# 5mm and the other 20% between 5

and 7mm. The temperature threshold of 273K represents the

upper limit defined by Kunkel et al. (2002) for ‘‘severe’’ LES

storms (the defined range is 263 to 273K for storms with 24 h

accumulation . 35 cm). According to Kunkel et al. (2002),

‘‘heavy’’ events (24 h snow accumulation between 20 and

35 cm) always occur between 258 and 263K. The number of

coastline and snow-covered precipitating elements in the

global a priori database within the TPW # 5mm and T2m #

273K subsets (bins in the bottom left corner of Fig. 9 plots, red

lines plotted as reference) is quite low, with just 1.3% (0.1%) of

all precipitating elements (all elements) in the coastline data-

base subset (Fig. 9a) and with values between 7% and 11%

(0.5% and 0.7%) of all precipitating elements (all elements)

in the snow-covered surface database subsets (Figs. 9b–e).

Relative to the GV-MRMS database, the lower percentages

of the a priori database for coastline, which is based on DPR

data, are a clear indication that LES (or in general precipi-

tation events associated to the same environmental condi-

tions as LES), in the coastline database is underrepresented,

especially considering that snow occurrences at coastline and

FIG. 7. As in Fig. 3, but for the GPM-CO overpass near 1226 UTC 9 Jan 2015 (GPM-CO orbit 4914). Circles are added here to highlight

some of the important features described in the text.
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nearby snow cover should be similar. While the precipitation

conditions over snow-covered surfaces are most likely solid

(of course not always), the coastal subset includes all the

global coastal elements, so it includes tropical precipitation

events as well as midlatitude or high-latitude liquid precipi-

tation. Moreover, the DPR a priori database is built only with

one winter season, which lowers even further the probability

of finding LES elements within the database. On the other

hand, the GV-MRMS-based database, which is only used for

snow-covered surfaces, has a reasonable representation of

LES (0.5%–0.7%), even though it might be still well below

the actual occurrence considering that the global shallow

convection snowfall occurrence is 36% (Kulie et al. 2016) and

that LES accounts for almost 80% occurrence and 50%

contribution to annual snowfall accumulation in the upper

Great Lakes (Pettersen et al. 2020). Among the several fac-

tors contributing to the underrepresentation of LES in the

GV-MRMS a priori database we can mention the quality

filters applied to the GV-MRMS precipitation product (only

high-quality is considered in the GPROF a priori database).

Additionally, the fixed Z–S relationship (not necessarily

suited for LES snowfall retrieval), or the missed shallow LES

bands distant from the radar, are responsible for underesti-

mation or underdetection of LES events. Finally, limiting

the a priori database to two winter seasons only, does not

guarantee a statistically meaningful number of LES entries.

The percentage of LES events compared with deeper and

more extended synoptic events is still too low for a Bayesian

algorithm. Therefore, low T2m and TPW values are not

common in the precipitation-rate distributions and the a

priori databases do not contain a large amount of elements

under these conditions.

Precipitation-rate probability density functions (PDFs)

of each a priori database subset illustrate the low proba-

bility of higher precipitation-rate events within the data-

base. Precipitation-rate PDFs of all precipitation (symbols)

and of precipitating elements with T2m # 273K and TPW #

5mm (symbols with solid lines) are shown in Fig. 10. The

coastline (asterisks) and maximum snow-cover (diamonds)

data points associated with the most probable LES conditions

(symbols with solid lines) contain only 120 and 126 elements

with precipitation rates over 1mmh21, respectively. Only

FIG. 8. (a) MRMS-GV snowfall rate over Lakes Erie and Ontario at 1226 UTC 9 Jan 2015 (orbit 4914),

(b) GPROF precipitation rate (using the SurfPrecip parameter from the operational product), (c) GPROF

PRT precipitation rate ($0.11 mm h21), (d) surface classification as from the GPROF SurfType parameter (as

in Fig. 4), (e) DPR precipitation rate (using the Normal Scan PrecipRateNearSurface parameter), and

(f) DPR storm-top height.
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0.3% among all precipitating elements contained in each

snow-covered a priori database subset contains rates above

1mm h21. The percentage decreases to 0.03% for the coastal

subset. This analysis suggests that on a global basis, finding

an optimal database match for intense LES events is very

difficult, especially for coastline surfaces that represent the

most common surface for the two case studies analyzed.

Incorrectly characterizing the background surface in the

4914 case represents a likely reason for poor algorithm

performance. A pixel-by-pixel a priori database investiga-

tion indicates that there are many low rates (,0.01 mm h21)

precipitating elements with similar TBs values that are

considered by the Bayesian algorithm with nonnegligible

Bayesian weights. This causes the Bayesian algorithm to

FIG. 9. The 2D distributions of GPROF a priori database elements (surface precipitation elements with PR $

0.1mmh21); red lines for T2m 5 273K and TPW 5 5mm are plotted as reference. Percentage of surface pre-

cipitation elements within the TPW# 5mm and T2m# 273K subsets for each surface database subsets calculated

over the total number of elements (all), and over the number of precipitating elements (precip) are also shown for

each distribution. (a) DPR a priori database is used for coastline, and GV-MRMS a priori database is used for

(b) minimum snow cover, (c) low snow cover, (d) moderate snow cover, and (e) maximum snow cover.
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smooth the output rates or miss them completely. A more

detailed analysis on the a priori database TBs distribution is

provided in the following section 4b. Populating the a priori

databases with additional LES cases (e.g., adding more

years of observations) or adding constraints to identify such

cases and create a separate ‘‘shallow convective’’ database

would improve algorithm performance.

b. TB-snowfall rate outliers in the a priori database

After analyzing the representativeness of the a priori data-

bases considering the occurrence of snowfall elements (with

snowfall rates $ 0.1mmh21) under LES environmental con-

ditions, we now verify to what extent these same elements are

represented in the multichannel TB space, in particular at

higher frequency. The GPROF search is based on a Bayesian

scheme in the TB space, so if the algorithm cannot find TB

elements relatively similar to the measured TBs the algorithm

will continue to expand the search bins until some minimum

number is included, it will include profiles from different bins,

but the retrieval will be less accurate. The goal here is to verify

how the TBs measured in the higher-frequency channels for

the LES case studies, and for extreme environmental condi-

tions, compare with the TBs of the a priori surface category

subset that is assigned by GPROF in such conditions.

The two case studies (GPM-CO orbits 4140 and 4914) pre-

sented in section 3 are analyzed further to verify if these situ-

ations can be defined as outliers from a TB-surface snowfall

rate perspective that make it more difficult, if not impossible,

for the algorithm to find a correct match with a priori database

entries. Figure 11 illustrates, for coastline and minimum snow-

cover surface types, boxplots of global TBs (blue thicker

boxes) considering only the precipitating elements (PR $

0.1mmh21, left column) and all the elements (right column) of

the a priori subsets of TPW and T2m values for the cases an-

alyzed (T2m5 269–271K and TPW5 4mm for orbit 4140 and

T2m 5 262–266K and TPW 5 3–4mm for orbit 4914). TB

boxplots for the selected cases over the Lake Erie and Ontario

region are also shown (red thinner boxes).

Most of the intense snowbands from the case studies occur

over coastline (Figs. 4d and 8d) with 50.6% (33.2%) of pre-

cipitating pixels for orbit 4140 (4914) and smaller portions over

minimum snow cover (25.3% and 41.3%, respectively) and

moderate snow cover (21.7% and 19.2%). The coastline box-

plots (Figs. 11a–d) clearly explain why GPROF performs

better for the 4140 case. The 4914 a priori database and the

single orbit 89-GHz TB distributions are very different. The

median of the 166-GHz TB distribution also falls out of

the 25th to 75th percentile range of the a priori database dis-

tributions (Fig. 11c). The only channel that shows similar da-

tabase and orbit TB distributions is 183.31 6 3GHz, but this

channel alone cannot resolve the signal and translate it into a

realistic retrieval despite its sensitivity to snowfall-scattering

signatures. Without examples of these particular TB distribu-

tions, the a priori database cannot correctly detect and retrieve

the precipitation rate for this event. Conversely, even if the TB

distributions for the 4140 case do not perfectly fit within the

25th–75th percentile range of the a priori database distribu-

tions, most of the channels substantially overlap and provide at

least some useful retrieval information.

The minimum snow-covered surface category TB distribu-

tions portray a very different situation than the coastline cat-

egory. The 4140 orbit TB distributions appear disconnected

and suggest poor GPROF results, while the 4914 distributions

are relatively centered. The results, however, show a completely

opposite interpretation. Comparing the TB distributions of

precipitating elements of the a priori database (Figs. 11e,g; blue

thicker boxes) with the distributions of all (precipitating and

nonprecipitating) a priori database elements (Figs. 11f,h;

blue thicker boxes), the total distributions extend toward

colder temperatures (instead of warmer as expected for

nonprecipitating elements). Low TPW values and clear-sky

conditions allow both 89- and 166-GHz channels to probe

closer to the surface and are contaminated by the cold snow-

covered surface signature. This particular behavior matches

colder snowband TB scattering signatures with nonsnowing

cold TB a priori database elements. Moreover, the TB distri-

butions of precipitating elements extracted from the orbit 4140

visibly differ from TB distributions comprised of precipitating

and nonprecipitating elements (Figs. 11e,f; red thinner boxes),

thus providing some useful information for the retrieval.

However, the 4914 orbit TB distributions extend their ranges,

but do not substantially change. The very similar distributions

between precipitating and all elements at low T2m and TPW

ranges do not help the algorithm assign higher Bayesian

weights to any of the elements, with consequent detrimental

quantification and detection ramifications.

This second analysis provides new and important informa-

tion about the a priori database. From section 4a, the distri-

bution of precipitating elements based on low T2m and TPW

are not statistically represented for coastline and snow-covered

surfaces (Fig. 9). Additionally, intense snow rates events are

FIG. 10. Probability density functions of precipitation rates as-

sociated with precipitating elements in the a priori databases.

Symbols represent the distribution of all precipitating events (PR$

0.1mmh21); symbols with solid lines represent precipitating events

with T2m# 273K and TPW# 5mm. Colors represent the different

surface types.
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FIG. 11. (left) Boxplots of high-frequency channel TBs for precipitating elements (PR$ 0.1mmh21) of

the a priori database associated with T2m and TPW in the case studies range (blue thicker boxes) and TBs

for the precipitating pixels of the case studies (red thinner boxes). (right) All a priori database elements

(precipitating and nonprecipitating). GPM-CO orbits 4140 and 4914 are shown for (a)–(d) coastline and

(e)–(h) minimum snow cover.

306 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 38

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/12/22 03:46 PM UTC



not included in the a priori database (Fig. 10). The TB distri-

butions analyzed in this section confirm that coastline and

minimum snow surface TB database entries are underrepre-

sented for extreme LES events. Low, moderate, and maximum

snow-covered surfaces were not included in this latter analysis

because of the very low pixel counts associated with LES bands

over the orbital regions considered.

c. Surface classification

GPROF surface classification methodologies were also

tested, based on the premise that GPROF searches the

GV-MRMS a priori database if the emissivity-based surface clas-

sification and/or AutoSnow product suggest a snow-covered

surface. Recall that the GV-MRMS snowfall rate a priori da-

tabase was developed to extend the DPR snowfall rate a priori

database and better represent the lower end of the snowfall

rate spectrum. The operational a priori database selection is

based on the monthly emissivity-based surface classification or

is updated using the AutoSnow product on the day before the

specific orbit date. AutoSnow is not available under cloudy

conditions. Considering that LES events can span multiple

days, all surfaces are now assumed to be snow covered

for testing purposes. Therefore, GPROF is adapted to use the

GV-MRMS a priori database exclusively for all pixels in the

following analysis.

The ensuing results are encouraging from both detection

and quantification viewpoints. Table 2 presents statistical

scores obtained by applying the PRT with the minimum

snowfall rate threshold defined case by case from the highest

HSS score. Compared to Table 1, the FAR for orbit 4140

(4914) decreases from 0.57 (0.54) to 0.30 (0.43). The CSI and

HSS also increase relative to the operational and PRT results.

Figure 12 displays updated QPE results of the two case studies.

For orbit 4140, the Lake Erie snowband (originally classified as

coastline and now forced to be snow covered) is correctly de-

tected and the core of the band shows comparable snow rates

(Fig. 12a compared to Fig. 4a). The GPROF PRT–GV-MRMS

correlation increases from 0.61 (Table 1) to 0.67 (Table 2), and

precipitation rates are higher when forcing the GV-MRMS-

only a priori database (Fig. 4c compared to Fig. 12a). On the

other hand, the snowband over Lake Ontario and lower snow

rates over land in the eastern part of the domain (428–438N748–
768W) are almost completely missed. Results for orbit 4914 are

also improved (Fig. 12b). The snowband pattern over the coast

of Lake Erie, completely missed in Fig. 8c, is now detected,

albeit with significant QPE issues. Forcing GPROF to use the

GV-MRMS a priori database exclusively also improves the

Lake Ontario snowband detection that was only partially

noted in Fig. 8c. It is worth noting that themajor improvements

are achieved over what was originally defined as coastline

surface by the algorithm, highlighting the fact that with a dif-

ferent surface classification the retrieval can be improved.

Figure 12 clearly shows that there are still detection issues over

land and a general underestimation of snowfall rates, but the

test example identifies surface classification as a major algo-

rithm component worth improving.

5. Conclusions

Intense LES detection and QPE by the GPM-CO PMW

sensor is addressed in this study. Two case studies were ana-

lyzed over the Lower Great Lakes region. NEXRAD obser-

vations in this region effectively observed these events and

serve as GPM-CO evaluation datasets. It is particularly im-

portant to investigate the GMI high-frequency TB response to

this globally ubiquitous type of shallow convective snow and

optimize theGPMGPROF algorithm for these extremewinter

precipitation events.

Both case studies (orbit 4140 on 20November 2014 and orbit

4914 on 9 January 2015) show GMI distinct TB scattering

signatures (e.g., 166- and 183.31-GHz TB depressions) associ-

ated with intense LES bands that match NEXRAD reflectivity

patterns. These scattering signatures were also evident over

varying surface types (e.g., open water vs snow-covered land)

and highlight the importance of high-frequency GMI channels

for snowfall detection purposes. Despite clear observational

TABLE 2. Statistical scores for the two case studies forcing

GPROF to use the GV-MRMS-only a priori database. The results

are obtained applying the PRT, and the thresholds considered case

by case are also shown.

Threshold (mmh21) HSS FAR CSI r

4140 0.13 0.35 0.30 0.26 0.67

4914 0.1 0.29 0.43 0.24 0.22

FIG. 12. Maps of GPROF estimates made forcing the GV-MRMS-only a priori database for (a) orbit 4140 and for

(b) orbit 4914.
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TB signals and extreme surface precipitation rates, the GMI

GPROF algorithm inconsistently inverts the TB signal into

realistic precipitation rates. Both detection and QPE perfor-

mance metrics are low when compared to ground-based

GV-MRMS radar network products.

A precipitation-rate threshold (PRT) was adopted to ef-

fectively filter low-quality GPROF retrievals and improve

comparisons with GV-MRMS. The threshold was obtained

case by case by using a minimum precipitation rate that opti-

mized HSS values. Quantitatively speaking, GPROF generally

underestimates precipitation when compared to GV-MRMS,

but better correlation results are obtained with GPROF PRT.

Product users should consider adopting this precipitation

threshold methodology when evaluating GPROF retrievals for

individual snowfall events.

GPROF relies on a priori TB–precipitation-rate databases

to generate QPE retrievals for each GMI observation, with

different databases applied to underlying surface types for

snowfall events. The DPR (land/coast surfaces) and the GV-

MRMS (snow-covered surfaces) GPROF a priori databases

are found to be underpopulated with observations for these

intense LES events that occur in cold, dry environments over

complex surface types, thus making it difficult for GPROF to

generate plausible retrievals. Moreover, even if the analyzed

orbital observations are included in the a priori databases,

the presence of nonprecipitating elements with similar TB

characteristics significantly smooth the retrievals and cause

retrieval underestimation issues. A final a priori database

sensitivity test was attempted by forcing GPROF to use the

GV-MRMS-only a priori database over all surface types for

both case studies. These tests demonstrate GPROF detec-

tion and QPE performance improvements and suggest that

better characterizing the surface type and/or applying the

GV-MRMS-only database on a wider basis will improve

GPROF snowfall retrievals.

In summary, this study offers the following research activities

to improve GPROFQPE performance for extreme LES events:

d Shallow, convective snowfall events that form in lowTPWand

cold environments are underrepresented in GPROF a priori

databases, especially for coastline and snow-covered surfaces.

Further testing should be undertaken with GPROF a priori

databases that are populated with more lake-effect/shallow

convective snow profiles, mainly over coast and snow-covered

surfaces. Additional years of GPM and/or GV-MRMS ob-

servations should also be included in the a priori database.

Furthermore, an expanded role of the GV-MRMS database

should be explored to quantify potential GPROF perfor-

mance improvements. Matched CloudSat–GPM observations

also represent a valuable source of shallow convective snow

observations to be included in an expanded a priori database.
d The surface classification, based on monthly emissivity cli-

matologies and the NOAA AutoSnow product, does not

correctly classify some snow-covered surfaces (mainly over

coastlines under cloudy conditions) and points the algo-

rithm to the wrong (snow cover free) a priori database.

Snow cover has distinct and extremely variable (in space

and time) radiative properties that, especially in extremely

dry conditions, affect the brightness temperatures at all

frequencies. Therefore, in such conditions the TB depen-

dence on the a priori database background surface cate-

gorization is extremely critical. It is fundamental to be

able to characterize the surface background and to cor-

rectly convey this information in the retrieval process. An

updated surface emissivity database developed by

Munchak et al. (2020) for surface characterization based

on five years of GPM observations should be considered to

improve intense LES retrievals. The exploitation of GMI

low-frequency channels at the time of the overpass could

offer extremely useful insights on the status of the frozen

surface background. A number of studies already inves-

tigated the information content in the TBs to separate the

surface signal from precipitation signal on an orbit basis

(e.g., Rysman et al. 2018; Ebtehaj et al. 2020; Turk et al.

2018). The use of a dynamic frozen surface characterization

approach could benefit GPROF snowfall detection and

retrieval.
d Similar to convective/stratiform rainfall partitioning schemes,

snowfall type flags could be introduced to force GPROF to

adopt specific settings (e.g., a specific a priori database with

only shallow convective or stratiform snowfall events, precip-

itation thresholds). Preliminary studies used the combined

CloudSat–GPM dataset (Turk 2016) and a machine learning

technique to train GMI reflectivities to classify the snowfall

mode, based on the CloudSat shallow convective retrieval

algorithm (Kulie et al. 2016). Results have shown high overall

accuracy in GMI classifying snowfall type (convective vs

stratiform), suggesting future avenues to further improve the

GPROF algorithm.

The GMI sensor possesses tremendous promise for detect-

ing intense convective snow events based on the analysis

presented in this study. The GPROF algorithm, however,

currently struggles to consistently translate distinctive GMI

TB signals into realistic precipitation rates and highlights the

inherent complexities associated with PMW retrievals of LES,

even for extreme snowfall-producing events. TB analysis with

full GPM constellation is planned in order to understand how

different spatial resolution and scanning capabilities could

impact the detection and quantification of LES narrow and

localized snowbands. This study offers numerous pathways

forward to improve algorithm performance for shallow con-

vective snow so the unique observational capabilities of the

GMI and affiliated GPM constellation satellites can be better

capitalized for high-latitude snowfall research.
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